JEE (Main)-2025 (Online) Session-2

4 April 2025 Shift - 1

PART: CHEMISTRY

1.	For the complex [Cr(ox)2Cl2]-	and [CrCl3(py)3] total no	number of stereo isomers is	respectively:
----	-------------------------------	---------------------------	-----------------------------	---------------

(1) 3, 2

(2)2,3

(3)2,2

(4)3,3

Ans. (1)

Sol. In [Cr(ox)₂Cl₂]-3 out of cis and trans, cis isomers is optically active.

[CrCl₃(py)₃] is of type [Ma₃b₃] and will have fac and mer geometric isomers.

2. Amongs the following species in which number of unpaired electrons is same is:

(1) Cr⁺², Mn⁺²

(2) Ti+2, Co+2

(3) V⁺², Co⁺²

(4) Cu⁺², Zn⁺²

Ans. (3)

Sol. V^{+2} [Ar]3d³, n = 3

 $_{27}\text{Co}^{+2}$ [Ar]3d⁷, n =3

Determine ratio of radius of 5th Bohr's orbit for He+ and Li+2

 $(1)\frac{2}{3}$

 $(2)\frac{3}{2}$

(3)2

(4) 3

Ans. (2)

Sol. $r\alpha \frac{n^2}{Z} \text{ or } r\alpha \frac{1}{Z} \text{ (if n same)}$

$$\frac{r_{He}^+}{r_{Li}^{+2}} = \frac{3}{2}$$

4. Given rate law $r = k [A]^n [B]^m$. If conc. of B is halved and A is doubled then determine ratio of final rate to initial rate

 $(1) 2^n$

(2) 2m

(3) 2n-m

(4) 2m-n

Ans. (3)

Sol.
$$\frac{r'}{r} = \frac{k}{k} \left(\frac{2}{1}\right)^n \left(\frac{1}{2}\right)^m = 2^{n-m}$$

Given following pairs for atomic radius

(I) (B < AI)

(II) (Al <Ga)

(III) (Ga <In)

(IV) (In <TI)

Among these one pair is incorrect. In, incorrect pair in +3 oxidation state element's whose ionic radius is more is having atomic number:

(1) 13

(2)31

(3)49

(4)5

Ans. (2)

Sol. $r:_{13}Al >_{31}Ga$

where as ionic radius: Al+3 < Ga+3

6. Among the following paramagnetic species are

O₂, F₂, N₂, H₂, S₂ (vapour)

(1) N₂, H₂, S₂ (vapour)

(2) O₂, S₂ (vapour)

(4) H2, O2, S2 (vapour)

(3) N₂, O₂

Ans. (2)

Sol. Theory based

7. In one L, HCl solution of pH =1, how many liter of water should be added so that pH becomes 2?

Ans. (9)

Sol. Dilution formula

$$10^{-1} \times 1 = 10^{-2} \times V_f$$

$$V_f = 10 L$$

$$\Delta V = 9L$$

8. In lead storage battery during use what is change in oxidation number of lead at anode & cathode?

	Anode	Cathode	
(1)	$0 \longrightarrow 2$	$4 \longrightarrow 2$	

$$(2) \qquad 4 \longrightarrow 2 \qquad 0 \longrightarrow 2$$

$$\begin{array}{ccccc}
(3) & 0 \longrightarrow 2 & 2 \longrightarrow 4 \\
(4) & 2 \longrightarrow 0 & 4 \longrightarrow 2
\end{array}$$

Ans. (1)

Sol. In use Pb +PbO₂ +H₂SO₄ \longrightarrow PbSO₄ +H₂O

9.
$$MnO_4^- \xrightarrow{H^+}$$

Then change in oxidation number of Mn = x

Fe⁺³ +CH₃COO⁻ → deep red complex

In complex in configuration of Fe number of d electrons =y

Determine x +y

Ans. (10) Sol. x = 5

Non redox reaction 26Fe+3: [Ar] 3d5

y = 5

10. At 300 K in isothermal expansion of 1 mol of an ideal gas volume increases from 10 dm³ to 20 dm³. Determine ΔE, W and Q

$$\{R = 8.3 \frac{J}{\text{mole/K}}\}$$
 $\{\log 2 = 0.30\}$

Ans. (1)

Sol. W = -2.303 nRT log
$$\frac{V_2}{V_1}$$

$$=-2.303 \times 1 \times 8.3 \times 300 \times \log 2$$

$$=-1720.34 J$$

 $\Delta E = 0 = Q + W$ {for isothermal process of an IG}

Amongs the following in which complex CFSE =0 and spin only magnetic moment is 5.91 BM (1) $[FeF_6]^{-4}$ (2) $[Mn(SCN)_6]^{-4}$ (3) $[Fe(CN)_6]^{-4}$ (4) $[Co(NH_3)_6]^{+3}$

(1) [FeF₆]-4 Ans. (2)

Sol. In Mn+2 (d5) with wfl

$$t_{2g}^{111}$$
, e_{g}^{11}

CFSE =3 $\times (-0.4 \Delta_0) + 2 \times (0.6 \Delta_0) = 0$

- 12. Select incorrect statement regarding H-atom:
 - (1) Probability density is highest at nucleus
 - (2) s-orbital is spherical in shape
 - (3) At a₀ (Bohr's radius) energy of electron is maximum
 - (4) 1s orbital has no radial node
- Ans. (3)
- **Sol.** Energy of electron is minimum at ao
- **13. Statement-I:** N forms with O compounds in +1 to +5 oxidation state due to $p\pi$ - $p\pi$ bonding.
 - Statement-II: NCIs cannot be formed due to unavailability of 2d subshell.
 - (1) Statement I is correct but Statement II is incorrect.
 - (2) Both Statement I & Statement II are correct.
 - (3) Statement I is incorrect but Statement II is correct.
 - (4) Both Statement I & Statement II are incorrect.
- Ans. (2)
- Sol. Theory based.

